Pattern Recognition in Time-Frequency Domain: Selective Regional Correlation and Its Applications
نویسندگان
چکیده
Pattern recognition is a very powerful tool in automated data analysis and it is widely used in many different applications (Chou & Juang, 2003; Jiang,1994; Blue et al., 1994; Milosavljević, 1994; Moreels & Smrekar, 2003). However, the application of such a tool can be a difficult task in some cases. For example, in a correlation-type scheme, the basic idea is to correlate the signal being analyzed with a known template or templates (Shiavi, 1999; Scharf, 1991) and make decisions based on the magnitude of the correlation coefficients, which is between 0 and 1. In practice, these extreme values are seldom achieved due to corrupting signals/noise that can affect the accuracy of pattern matching and subsequently lead to errors in classification (Kil & Shin, 1996). The corrupting signals may also bear some resemblance to the template being matched. This is particularly true if the pattern of interest is a non-stationary transient signal. Furthermore, it is well known that traditional time domain correlation-based pattern recognition methods do not fully utilize the frequency characteristics of the template and the signal being analyzed. Hence, such methods perform poorly when applied to transient signals. To overcome these difficulties, a scheme known as selective regional correlation (SRC) has been developed (Sejdić & Jiang, 2007). It has been shown that if a template has bandlimited characteristics, significant improvement in the performance of pattern recognition can be readily made by a relatively simple preprocessing of the signal and the template in the time-frequency domain (Sejdić & Jiang, 2007). The redundant representation of a 1D signal in a 2D time-frequency domain can provide an additional degree of freedom for signal analysis. Such pre-processing effectively separates the intertwined time domain features of the signal, allowing the important characteristics to be exposed in the time-frequency domain, resulting in more effective pattern matching. Hence, correlation between the signal being analyzed and the template needs to be conducted only in selected regions of interest in the time-frequency domain. An overview of the theoretical developments behind the SRC is provided in this chapter along with some recent results. The performance of the scheme is briefly reviewed and compared with that of the general correlation technique through the analysis of a set of O pe n A cc es s D at ab as e w w w .ite ch on lin e. co m
منابع مشابه
Single-Carrier Frequency-Domain Equalization for Orthogonal STBC over Frequency-Selective MIMO-PLC channels
In this paper we propose a new space diversity scheme for broadband PLC systems using orthogonal space-time block coding (OSTBC) transmission combined with single-carrier frequency-domain equalization (SC-FDE). To apply this diversity technique to PLC channels, we first propose a new technique for combining SC-FDE with OSTBCs applicable to all dispersive multipath channels impaired by impulsive...
متن کاملPrediction of dispersed mineralization zone in depth using frequency domain of surface geochemical data
Discrimination of the blind and dispersed mineralization deposits is a challenging problem in geochemical exploration. The frequency domain (FD) of the surface geochemical data can solve this important issue. This new exploratory information can be achieved using the interpretation of FD of geochemical data, which is impossible in spatial domain. In this research work, FD of the surface geochem...
متن کاملSelective Tone Reservation method for PAPR reduction in SFBC-OFDM systems
The high Peak to Average Power Ratio (PAPR) of Orthogonal Frequency Division Multiplexing (OFDM) and MIMO-OFDM systems reduces the system efficiency. In this paper, an extension of Tone Reservation (TR) method is introduced for PAPR reduction in Space Frequency Block Coded OFDM (SFBC-OFDM) systems. The proposed algorithm is based on a time domain kernel which is added to the signal of the anten...
متن کاملA New Implementation of PCA for Fast Face Detection
Principal Component Analysis (PCA) has many different important applications especially in pattern detection such as face detection / recognition. Therefore, for real time applications, the response time is required to be as small as possible. In this paper, new implementation of PCA for fast face detection is presented. Such new implementation is designed based on cross correlation in the freq...
متن کاملمنطقه بندی حوزه های آبخیز با به کارگیری نوعی از شبکه های عصبی مصنوعی به منظور تحلیل فراوانی منطقه ای سیلاب
Self-Organizing Feature Maps (SOFM) are a variety of artificial neural networks that their applications in the areas of pattern recognition and data clustering makes them noticeable tools to perform regional flood frequency analysis (RFFA). In this study, ability of Self-Organizing Feature Maps for regionalization of Sefidrood watershed in order to perform regional flood frequency analysis usin...
متن کامل